Aurofluid® 2PF

Instructions for use

High-Gold dental casting Alloy, hard, Type 2, yellow, Palladium free

Indication

C & B technique for crowns and small span bridges, inlays and onlays.

- a. Inlays, onlays, crowns ¾
- b. Single crowns
- c. Short-span bridge-work

Physical properties

Composition in weight %

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au + Pt group metals</td>
<td>79.06</td>
</tr>
<tr>
<td>Au</td>
<td>78.05</td>
</tr>
<tr>
<td>Pt</td>
<td>0.99</td>
</tr>
<tr>
<td>Ir</td>
<td>0.02</td>
</tr>
<tr>
<td>Ag</td>
<td>11.50</td>
</tr>
<tr>
<td>Cu</td>
<td>8.50</td>
</tr>
<tr>
<td>Zn</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Density /cm³ | 15.9 |
Melting range °C | 895 – 960 |
Young’s Modulus GPa * | 80 |

Mechanical properties

<table>
<thead>
<tr>
<th>Test</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness HV5*</td>
<td>125</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>0.2 % Proof stress Rp 0.2 % MPa*</td>
<td>260</td>
<td>270</td>
<td>320</td>
</tr>
<tr>
<td>Elongation A5 % *</td>
<td>40</td>
<td>48</td>
<td>30</td>
</tr>
</tbody>
</table>

State

1. soft
2. as cast
3. hardened

Solders

<table>
<thead>
<tr>
<th>Solder</th>
<th>Melting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.G 810</td>
<td>750 – 810 °C</td>
</tr>
<tr>
<td>S.G 750</td>
<td>695 – 750 °C</td>
</tr>
</tbody>
</table>

* The values indicated result from measurements obtained under exactly defined conditions. Individual deviations of ± 10 % are possible and to be considered as normal.

Preventive measure (contraindication) and important notes

These instructions for use must be precisely followed. It has been suggested in specialized literature that some of its components can, in extremely rare cases, have allergy effects. The choice of the material is the decision of the practitioner based on his knowledge of the sensitivity of the patient.

Corrosion resistance and biocompatibility

Aurofluid® 2PF has been submitted to the following tests:

- Corrosion resistance according to ISO 22674
- Cytotoxicity test according to ISO 10993-5
- Sensitization test according to ISO 10993-10
- Mutagenicity test (AMES) according to 10993-3

The alloy is considered to be highly corrosion resistant and showed neither a cytotoxic nor a mutagenic potential nor did it cause any allergic sensitization.

Launch year 1994

Aurofluid® 2PF corresponds to the standards EN ISO 22674

Aurofluid® 2PF has been manufactured according to the quality standards ISO 9001 / ISO 13485.

Rx only
Aurofluid® 2PF

Waxing up
The ultimate thickness of the cast metal coping should not be less than 0.3 mm.
Therefore: Consideration must be given to this fact at the wax-up stage, long span frameworks require structural reinforcement to ensure stability and anticipated solder joints should be of adequate surface area to provide sufficient stability to the frame.

Spruing
Wax sprues of no less than Ø 3.5 mm are required. Direct (Ø 3.5 mm) and cross bar (Ø 5 mm) spruing produce excellent results. Feeder sprues to heavy pontics should be of at least Ø 4 mm. Air vents (Ø 1 mm) may be used to advantage.
Wax patterns should be set outside the thermal centre, i.e. near the casting ring wall and about 5 mm from the end. For individual copings and small bridges (up to three units), use of the circular sprue provides ideal positioning of the wax patterns and ensures controlled solidification of the frameworks.

Investing
When using steel casting rings always use refractory liner in order to allow free expansion of the investment. All regular or phosphate-bonded (e.g. Univest® Rapid) investments for precious metal alloys may be used. Follow the procedures recommended by the manufacturer.

Preheating
Observe manufacturer’s recommendations with regard to setting times, temperature levels etc. On reaching the end temperature a soaking period of 20 to 45 min. is advisable depending on the size of the cylinder.
Preheating: 630°C–680°C

Crucibles
Glaze the crucible before first use with a recommended flux (e.g. Borax/Boric acid). The following crucibles can be used:

- Graphite crucible: Casting temperature 1110°C
- Ceramic crucible: Casting temperature 1160°C
- Vitreous carbon crucible: Casting temperature 1140°C

Re-melting
When melting down thoroughly cleaned casting buttons, add at least ⅔ of new alloy. The used copings have to be clean, free of investment and flux residue.

Melting
It is important, when using a torch for melting (for inst. Meteor type «O») that the recommended propane (approx. 0.5 bar or 7.25 psi) / oxygen (approx. 1.0 bar or 14.5 psi) mixture and pressure is observed. Before melting add a pinch of flux to the alloy. Once the alloy has completely melted, continue heating for a further approx. 5 sec. before releasing the casting machine arm.
When melting by resistance heating, the power must be maintained for an additional 20–40 sec. before casting. Always ensure that both furnace and crucible have reached this temperature before adding the alloy.
Flux: Borax

Cooling
Bench cool the casting ring.

Devesting/Cleaning
Clean by blasting with glass beads or pure aluminium oxide (Al₂O₃) particle size (50 μm to 125 μm) at 1.5 to 2.0 bar (21.7 to 29 psi) pressure.

Pickling
Following casting or soldering, the frame at room temperature may be pickled in hot Desoxid for at least 2 min. – Desoxid I (75 %).

Finishing
Use abrasive grinding points of your choice.

Preparation for resin bonding
Blast with aluminium oxid (Al₂O₃), particles size approx. 110 μm and steam clean. Follow manufacturers recommendations when bonding resin veneers.

Soldering/Laser
We recommend using a propane/oxygen torch (Meteor Type «L») for soldering and a flux like Fluxor. During soldering wear dark goggles for protection.
The design of the soldering block is a compromise between minimising its thermal mass whilst retaining sufficient strength to avoid its fracturing during soldering. Leave a parallel gap of 0.1 – 0.2 mm between surfaces to be soldered and sufficient area to ensure adequate strength of the joint.
Laser welding wire: LW No. 5

Heat treatments
Annealed 700°C/10 min. – quench in water
Self-hardened by slow (bench-) cooling of the casting ring
Hardened (only after annealing) 250°C/15 min. – let bench-cool

Polishing
Thorough rubberwheeling ensures easy prepolishing. For best polishing results, soft brushes, felts and cotton wheels are employed using Legabril Diamond diamond-paste. «Whiting chalk» (chalk-powder) mixed with water on softbrushes or cotton wheels may be used for final high polish.

Waxing up
The ultimate thickness of the cast metal coping should not be less than 0.3 mm.
Therefore: Consideration must be given to this fact at the wax-up stage, long span frameworks require structural reinforcement to ensure stability and anticipated solder joints should be of adequate surface area to provide sufficient stability to the frame.

Spruing
Wax sprues of no less than Ø 3.5 mm are required. Direct (Ø 3.5 mm) and cross bar (Ø 5 mm) spruing produce excellent results. Feeder sprues to heavy pontics should be of at least Ø 4 mm. Air vents (Ø 1 mm) may be used to advantage.
Wax patterns should be set outside the thermal centre, i.e. near the casting ring wall and about 5 mm from the end. For individual copings and small bridges (up to three units), use of the circular sprue provides ideal positioning of the wax patterns and ensures controlled solidification of the frameworks.

Investing
When using steel casting rings always use refractory liner in order to allow free expansion of the investment. All regular or phosphate-bonded (e.g. Univest® Rapid) investments for precious metal alloys may be used. Follow the procedures recommended by the manufacturer.

Preheating
Observe manufacturer’s recommendations with regard to setting times, temperature levels etc. On reaching the end temperature a soaking period of 20 to 45 min. is advisable depending on the size of the cylinder.
Preheating: 630°C–680°C

Crucibles
Glaze the crucible before first use with a recommended flux (e.g. Borax/Boric acid). The following crucibles can be used:

- Graphite crucible: Casting temperature 1110°C
- Ceramic crucible: Casting temperature 1160°C
- Vitreous carbon crucible: Casting temperature 1140°C

Re-melting
When melting down thoroughly cleaned casting buttons, add at least ⅔ of new alloy. The used copings have to be clean, free of investment and flux residue.

Melting
It is important, when using a torch for melting (for inst. Meteor type «O») that the recommended propane (approx. 0.5 bar or 7.25 psi) / oxygen (approx. 1.0 bar or 14.5 psi) mixture and pressure is observed. Before melting add a pinch of flux to the alloy. Once the alloy has completely melted, continue heating for a further approx. 5 sec. before releasing the casting machine arm.
When melting by resistance heating, the power must be maintained for an additional 20–40 sec. before casting. Always ensure that both furnace and crucible have reached this temperature before adding the alloy.
Flux: Borax

Cooling
Bench cool the casting ring.

Devesting/Cleaning
Clean by blasting with glass beads or pure aluminium oxide (Al₂O₃) particle size (50 μm to 125 μm) at 1.5 to 2.0 bar (21.7 to 29 psi) pressure.

Pickling
Following casting or soldering, the frame at room temperature may be pickled in hot Desoxid for at least 2 min. – Desoxid I (75 %).

Finishing
Use abrasive grinding points of your choice.

Preparation for resin bonding
Blast with aluminium oxid (Al₂O₃), particles size approx. 110 μm and steam clean. Follow manufacturers recommendations when bonding resin veneers.

Soldering/Laser
We recommend using a propane/oxygen torch (Meteor Type «L») for soldering and a flux like Fluxor. During soldering wear dark goggles for protection.
The design of the soldering block is a compromise between minimising its thermal mass whilst retaining sufficient strength to avoid its fracturing during soldering. Leave a parallel gap of 0.1 – 0.2 mm between surfaces to be soldered and sufficient area to ensure adequate strength of the joint.
Laser welding wire: LW No. 5

Heat treatments
Annealed 700°C/10 min. – quench in water
Self-hardened by slow (bench-) cooling of the casting ring
Hardened (only after annealing) 250°C/15 min. – let bench-cool

Polishing
Thorough rubberwheeling ensures easy prepolishing. For best polishing results, soft brushes, felts and cotton wheels are employed using Legabril Diamond diamond-paste. «Whiting chalk» (chalk-powder) mixed with water on softbrushes or cotton wheels may be used for final high polish.

Waxing up
The ultimate thickness of the cast metal coping should not be less than 0.3 mm.
Therefore: Consideration must be given to this fact at the wax-up stage, long span frameworks require structural reinforcement to ensure stability and anticipated solder joints should be of adequate surface area to provide sufficient stability to the frame.

Spruing
Wax sprues of no less than Ø 3.5 mm are required. Direct (Ø 3.5 mm) and cross bar (Ø 5 mm) spruing produce excellent results. Feeder sprues to heavy pontics should be of at least Ø 4 mm. Air vents (Ø 1 mm) may be used to advantage.
Wax patterns should be set outside the thermal centre, i.e. near the casting ring wall and about 5 mm from the end. For individual copings and small bridges (up to three units), use of the circular sprue provides ideal positioning of the wax patterns and ensures controlled solidification of the frameworks.

Investing
When using steel casting rings always use refractory liner in order to allow free expansion of the investment. All regular or phosphate-bonded (e.g. Univest® Rapid) investments for precious metal alloys may be used. Follow the procedures recommended by the manufacturer.

Preheating
Observe manufacturer’s recommendations with regard to setting times, temperature levels etc. On reaching the end temperature a soaking period of 20 to 45 min. is advisable depending on the size of the cylinder.
Preheating: 630°C–680°C

Crucibles
Glaze the crucible before first use with a recommended flux (e.g. Borax/Boric acid). The following crucibles can be used:

- Graphite crucible: Casting temperature 1110°C
- Ceramic crucible: Casting temperature 1160°C
- Vitreous carbon crucible: Casting temperature 1140°C

Re-melting
When melting down thoroughly cleaned casting buttons, add at least ⅔ of new alloy. The used copings have to be clean, free of investment and flux residue.

Melting
It is important, when using a torch for melting (for inst. Meteor type «O») that the recommended propane (approx. 0.5 bar or 7.25 psi) / oxygen (approx. 1.0 bar or 14.5 psi) mixture and pressure is observed. Before melting add a pinch of flux to the alloy. Once the alloy has completely melted, continue heating for a further approx. 5 sec. before releasing the casting machine arm.
When melting by resistance heating, the power must be maintained for an additional 20–40 sec. before casting. Always ensure that both furnace and crucible have reached this temperature before adding the alloy.
Flux: Borax