Ceradelta® 2
Instructions for use
Palladium-based dental Alloy for Porcelain bonding, extra hard, white, type 4

Indication
Porcelain-to-metal applications, C&B technique, crowns and bridges suprastructures on implants, milling works, cast partial dental frames.

Physical properties
Composition in weight %

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au + Pt group metals</td>
<td>61.50</td>
</tr>
<tr>
<td>Pd</td>
<td>61.45</td>
</tr>
<tr>
<td>Ru</td>
<td>0.05</td>
</tr>
<tr>
<td>Ag</td>
<td>24.45</td>
</tr>
<tr>
<td>In</td>
<td>2.00</td>
</tr>
<tr>
<td>Sn</td>
<td>10.00</td>
</tr>
<tr>
<td>Zn</td>
<td>2.00</td>
</tr>
<tr>
<td>B</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Density g/cm³ 11.3
Melting range °C 1160–1265
CTE (25–500 °C) 10⁻⁶ K⁻¹ 14.2
CTE (25–600 °C) 10⁻⁶ K⁻¹ 14.6
Young's Modulus GPa * 125

Mechanical properties

<table>
<thead>
<tr>
<th>State</th>
<th>Hardness HV5 *</th>
<th>0.2 % Proof stress Rp 0.2 % MPA *</th>
<th>Elongation A5 % *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>315</td>
<td>540</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>265</td>
<td>700</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>305</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solders before bonding

<table>
<thead>
<tr>
<th>S.G</th>
<th>Melting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1120</td>
<td>1040–1120 °C</td>
</tr>
</tbody>
</table>

Solders after bonding

<table>
<thead>
<tr>
<th>S.G</th>
<th>Melting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>695–750 °C</td>
</tr>
</tbody>
</table>

* The values indicated result from measurements obtained under exactly defined conditions. Individual deviations of ± 10 % are possible and to be considered as normal.

Preventive measure (contraindication) and important notes
These instructions for use must be precisely followed. It has been suggested in specialized literature that some of its components can, in extremely rare cases, have allergy effects. The choice of the material is the decision of the practitioner based on his knowledge of the sensitivity of the patient.

Corrosion resistance and biocompatibility
Ceradelta® 2 has been submitted to the following tests:
- Corrosion resistance according to ISO 22674
- Cytotoxicity test according to ISO 10993-5
- Sensitization test according to ISO 10993-10
- Mutagenicity test (AMES) according to 10993-3

The alloy is considered to be highly corrosion resistant and showed neither a cytotoxic nor a mutagenic potential nor did it cause any allergic sensitization.

Launch year 1992
Ceradelta® 2 corresponds to the standards EN ISO 22674 / EN ISO 9693
Ceradelta® 2 has been manufactured according to the quality standards ISO 9001 / ISO 13485.

Rx only

The products carry the CE sign.
See packaging for details.
Waxing up
The ultimate thickness of the cast metal coping should not be less than 0.3 mm. Therefore: Consideration must be given to this fact at the wax-up stage, long span frameworks require structural reinforcement to ensure stability and anticipated solder joints should be of adequate surface area to provide sufficient stability to the frame.

Spruing
Wax sprues of no less than Ø 3.5 mm are required. Direct (Ø 3.5 mm) and cross bar (Ø 5 mm) spruing produce excellent results. Feeder sprues to heavy pontics should be of at least Ø 4 mm. Air vents (Ø 1 mm) may be used to advantage. Wax patterns should be set outside the thermal centre, i.e. near the casting ring wall and about 5 mm from the end. For individual copings and small bridges (up to three units), use of the circular sprue provides ideal positioning of the wax patterns and ensure controlled solidification of the frameworks.

Investing
When using steel casting rings always use refractory liner in order to allow free expansion of the investment. All regular or phosphate-bonded (e.g. Univest®Plus or Univest®Rapid) investments for precious metal alloys may be used. Follow the procedures recommended by the manufacturer.

Preheating
Observe manufacturer’s recommendations with regard to setting times, temperature levels etc. On reaching the end temperature a soaking period of 20 to 45 min. is advisable depending on the size of the cylinder. Preheating temperature: 850 °C

Crucibles
Glaze the crucible before first use with a recommended flux (e.g. Borax/Boric acid). The following crucibles can be used:

Ceramic crucible: Casting temperature 1450 °C

Re-melting
When melting down thoroughly cleaned casting buttons, add at least 1⁄3 of new alloy. The used copings have to be clean, free of investment and flux residue.

Melting
It is important, when using a torch for melting (for inst. Meteor type «O») that the recommended propane (approx. 0.5 bar or 7.25 psi) / oxygen (approx. 1.0 bar or 14.5 psi) mixture and pressure are observed. Before melting add a pinch of flux to the alloy. Once the alloy has completely melted, continue heating for a further approx. 5 sec. before releasing the casting machine arm. When melting by induction or resistance heating, the power must be maintained for an additional approx. 5 sec. Flux: boric acid

Cooling
Bench cool the casting ring.

Devesting/Cleaning
Clean by blasting with glass beads or pure aluminium oxide (Al₂O₃) particle size (50 μm to 125 μm) at 1.5 to 2.0 bar (21.7 to 29 psi) pressure.

Pickling
Following casting or soldering, the frame at room temperature may be pickled in hot Desoxid II (63 %) for at least 2 min.

Finishing
Trim the framework first preferably using carbide burs and then fine grinding points at low speed. Blasting is done using pure aluminium oxide (approx. 110 μm). Recommended grinding points: Cerasiv Blue (5’000 to 10’000 rpm). Pressure: 1.0 to 2.0 bar

Cleaning
Frameworks must be cleaned preceding oxidation either in boiling water for 10 min. (distilled water is recommended) – in an ultrasonic unit for 5 min. – or with a steam cleaner.

Gilding (Aurofilm® 2000)
The application of a gilding layer of Aurofilm is possible according to the instructions for use. Aurofilm should be fired in aceramic oven. Firing temperature: 920 °C to 940 °C

Oxidation
10 min. without vacuum to 950 °C and bench cool. The framework should have a uniform grey appearance. After oxidation frames should be cleaned in hot, diluted (10 %) sulphuric acid (H₂SO₄) or in a hot pickling solution of Desoxid II for 10 min. Use this solution just for this alloy. Then thoroughly clean frameworks.
Porcelain application
Porcelain or resin applications are subject to the manufacturers instructions. The alloy is compatible with most known porcelain brands. Consider the CTE of the alloy in conjunction with the cooling recommendation of the porcelain manufacturer. Paste opaques should be pre-dried for approx. 10 min before firing at manufacturers recommendation.
Pre-drying temperature: 300 °C – 400 °C.

Excellent results have been obtained with the following porcelains (in alphabetical order), with a normal cooling cycle: Carat, Ceramco II, Creation &., Duceram Plus, Finesse, IPS Classic, MagicCeram, Omega, Omega 900, Super Porcelain EX-3, Symbio Ceram, Vintage Halo, VMK-95

Excellent results have been obtained with the following porcelains (in alphabetical order), with a slow cooling cycle: dSign

To avoid greening of the porcelain, which can occur in the use of the alloy a number of anti-greening products from porcelain manufacturers are available. Regard the respective instructions.
A solution to avoid greening altogether is to use a surface treatment with Aurofilm® 2000. Graphite supports are best used to protect the muffle during firing providing a diminishing deterrent against possible greening. It is recommended to purge the furnace using a graphite rod, at approximately 1000 °C for 20 min. under vacuum.

Soldering/Laser
We recommend using a propane/oxygen torch (Meteor Type «L») for soldering and a flux like Fluxor. During soldering wear dark goggles for protection. The design of the soldering block is a compromise between minimising its thermal mass whilst retaining sufficient strength to avoid its fracturing during soldering. Leave a parallel gap of 0.1 – 0.2 mm between surfaces to be soldered and sufficient area to ensure adequate strength of the joint.
Laser welding wire: LW No. 3

Heat treatments
Self-hardened by slow (bench-) cooling of the casting ring
Hardened 600 °C/15 min. – let bench-cool

Polishing
The oxide layer may be removed in Desoxid. Thorough rubber-wheeling ensures easy polishing. For best prepolishing results, soft brushes, felts and cotton wheels are employed using Legabril Diamond diamond-paste. «Whiting chalk» (chalk-powder) mixed with water on soft brushes or cotton wheels may be used for final high polish.