Intended use
Fixed and removable dentures.

Product description
These casting Ag-Pd-Au alloys have a narrower processing tolerance than high gold content and reduced gold content alloys. The group includes alloys with different mechanical and physical properties. It is therefore possible to select an alloy on the basis of its composition which is best suited to the type of work to be performed. The alloys can be soldered without difficulties and are also suitable for the cast-on technique.

Expected clinical benefit
Restoration of chewing function and improved aesthetics.

Qualification
Professional dentist and dental technician know-how is required. The instructions for use must be available and understood before the first application. The manufacturing work must be carried out by qualified specialists. For information and additional details, please contact your Cendres+Métaux representative.

Side effects
With patients having an existing allergy to one or several elements contained in any one alloy, this particular alloy must not be used. With patients suspected of having an allergy to one or several elements contained in any one alloy, this alloy can only be used after preliminary allergological testing and proof of a non-existing allergy.

Traceability of lot numbers
If different lots of an alloy are being used for the realisation of a restoration, all lot numbers concerned must be noted in order to assure traceability.

Disinfection
All the parts must be disinfected before use with a high-level disinfectant. Follow the instructions of the manufacturer regarding dosage and exposure time. When choosing the disinfectant, ensure that:
- it is suitable for the cleaning and disinfection of dental prosthetic components,
- it is compatible with the materials of the products to be cleaned and disinfected, and
- it has proven efficacy in disinfection.

We recommend using an ortho-phthaldehyde (OPA) solution like the Cidex® OPA Solution. Strictly follow the manufacturer's instructions.

General instructions

Modelling
Usual modelling technique for ceramic-fused-to-metal works. Minimal wall thickness 0.4 mm. With bridgework the connections must have a minimum section of 6–9 mm². Modelling of garlands or inlay shaped reinforcements in the palatinal region will give added stability. The application of air and cooling vents improves casting results.
Spruing
Wax sprues of no less than Ø 3.5 mm are required. Direct (Ø 3.5 mm) and cross bar (Ø 5 mm) spruing produce excellent results. Feeder sprues to heavy pontics should be of at least Ø 4 mm. Air vents (Ø 1 mm) may be used to advantage.
Wax patterns should be set outside the thermal centre, i.e. near the casting ring wall and about 5 mm from the end. For individual copings and small bridges (up to three units), use of the circular sprue provides ideal positioning of the wax patterns and ensure controlled solidification of the frameworks.

Investing
When using steel casting rings always use refractory liner in order to allow free expansion of the investment.

When using plaster based investment compounds care has to be taken not to exceed a preheating temperature of 700°C in order to prevent an embrittlement of the alloy by the uptake of sulphur. Pd-based alloys absorb carbon in the melted condition. Therefore graphite based investment compounds should not be used. Also, these alloys should only be melted in ceramic or vitrified carbon crucibles to prevent embrittlement of the alloy during frequent remelting.

The following investment materials from Cendres+Métaux are suitable for this alloy type:
uniVest Plus: universal phosphate-bonded, graphite- and gypsum-free investment material
uniVest Rapid: graphite-free, phosphate-bonded investment material

Rapid preheating technique: the use of burn-out plastic parts can lead to spalling in the investment material.

Preheating
Observe manufacturer’s recommendations with regard to setting times, temperature levels etc. On reaching the end temperature a soaking period of 20 to 45 min. is advisable depending on the size of the cylinder.

Re-use of alloy
Only use perfectly cleaned (by sand-blasting with aluminium oxide) buttons and sprues and add at least ¼ of new alloy.

Melting
It is important, when using a torch for melting that the recommended propane (approx. 0.5 bar or 7.25 psi) / oxygen (approx. 1.0 bar or 14.5 psi) mixture and pressure are observed. Before melting add a pinch of flux to the alloy. Flux: boric acid

Surface quality of cast objects
In order to prevent corrosion the cast object must have a surface free of shrink holes and porosities after trimming and polishing.

Cooling of castings
Do not quench the casting cylinder after casting, but bench cool to room temperature.

Finishing
Trim the framework first preferably using carbide burs and then fine grinding points at low speed.

Soldering
We recommend using a propane/oxygen torch for soldering and a flux like CM soldering paste. During soldering wear dark goggles for protection. The design of the soldering block is a compromise between minimising its thermal mass whilst retaining sufficient strength to avoid its fracturing during soldering. Leave a parallel gap of 0.1 – 0.2 mm between surfaces to be soldered and sufficient area to ensure adequate strength of the joint.

Pickling
After casting or soldering pickle in a warm, freshly prepared (clean) solution of 10 vol. % sulphuric acid (H₂SO₄)

Note: When using other pickling agents follow the instructions for use of the respective manufacturer.

Thermal treatments (not compulsory)
After casting, some of the high gold metal alloys have not yet obtained their maximal mechanical properties. For long-span bridgework and for works with attachments in combustible plastic which will not be veneered with ceramic, a simulation firing of the work in the as cast condition (cleaned frameworks, sprues not yet removed) in the ceramic furnace can be done. This procedure has the following advantages: The hardness increase allows easier and faster trimming of the frameworks. Grinding overlaps are prevented. Possible tensions due to the casting process are reduced. (Firing data see table overleaf).
Gilding of frameworks
Gilding is carried out at the user’s own risk.

Polishing
After the last firing free metal surfaces must be polished to a high shine in order to completely remove the oxide layer.

<table>
<thead>
<tr>
<th>Product list</th>
<th>Cat. No.</th>
<th>10 g</th>
<th>25 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Alloys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strator 3</td>
<td>01000313</td>
<td>01000314</td>
<td></td>
</tr>
<tr>
<td>Pagalinor 2</td>
<td>01000330</td>
<td>01000331</td>
<td></td>
</tr>
<tr>
<td>Pallorag 33</td>
<td>01000306</td>
<td>01000307</td>
<td></td>
</tr>
<tr>
<td>Pagalin 2</td>
<td>01000278</td>
<td>01000279</td>
<td></td>
</tr>
</tbody>
</table>

Labelling on packaging/symbols
- Date of manufacture
- Manufacturer
- Catalogue number
- Batch code
- Quantity
- Observe the Instructions for Use, which are available in electronic form at the address specified.
- Attention: According to US federal law, this product may only be sold by or on behalf of a physician.
- Cendres+Métaux products with CE labelling meet the requirements of the relevant European requirements.
- Unique Device Identification – UDI
- European Authorised Representative
- Importer in EU
- Medical device
Instructions for use

Alloys

<table>
<thead>
<tr>
<th>Type (ISO 22674)</th>
<th>Indication</th>
<th>Composition %</th>
<th>Physical properties</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Au + Pt group metals</td>
<td>Density g/cm³</td>
<td>Melting range °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au</td>
<td>Pt</td>
<td>Pd</td>
</tr>
<tr>
<td>Strator 3</td>
<td>3</td>
<td>40.00</td>
<td>20.00</td>
<td>19.95</td>
</tr>
<tr>
<td>Pagalinor 2</td>
<td>4</td>
<td>31.41</td>
<td>12.50</td>
<td>18.90</td>
</tr>
<tr>
<td>Pallorag 33</td>
<td>4</td>
<td>30.00</td>
<td>10.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Pagalin 2</td>
<td>4</td>
<td>26.05</td>
<td>3.00</td>
<td>23.00</td>
</tr>
</tbody>
</table>

Inlay, onlay, crowns

- a: Inlays, onlays, crowns
- b: Single crowns
- c: Short-span bridgework
- d: Long-span bridgework
- e: Milled work
- f: Clasps, lingual bars, palatinal plates

Alloys Physical properties

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Density g/cm³</th>
<th>Melting range °C</th>
<th>Young’s Modulus GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strator 3</td>
<td>11.4</td>
<td>855–900</td>
<td>75</td>
</tr>
<tr>
<td>Pagalinor 2</td>
<td>11.1</td>
<td>900–980</td>
<td>110</td>
</tr>
<tr>
<td>Pallorag 33</td>
<td>10.9</td>
<td>935–1020</td>
<td>95</td>
</tr>
<tr>
<td>Pagalin 2</td>
<td>10.8</td>
<td>975–1070</td>
<td>95</td>
</tr>
</tbody>
</table>

Mechanical properties

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Hardness HV5</th>
<th>Proof stress Rp 0.2% MPa</th>
<th>Tensile strength (Rm) MPa</th>
<th>Elongation A5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As cast</td>
<td>Soft</td>
<td>Hardened</td>
<td>As cast</td>
</tr>
<tr>
<td>Strator 3</td>
<td>175</td>
<td>125</td>
<td>165*</td>
<td>315</td>
</tr>
<tr>
<td>Pagalinor 2</td>
<td>185</td>
<td>135</td>
<td>240*</td>
<td>430</td>
</tr>
<tr>
<td>Pallorag 33</td>
<td>170</td>
<td>135</td>
<td>230*</td>
<td>430</td>
</tr>
<tr>
<td>Pagalin 2</td>
<td>175</td>
<td>135</td>
<td>230*</td>
<td>390</td>
</tr>
</tbody>
</table>

* 100% selfhardening after cooling in the cylinder or soldering block, otherwise particular instructions for use.
Alloys Recommended casting systems (not compulsory) Particular instructions for use

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Pre-Solder</th>
<th>Post Solder</th>
<th>Laser welding wire</th>
<th>Instructions for use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strator 3</td>
<td>S.G 810</td>
<td>S.G 750</td>
<td>not weldable</td>
<td>700 °C</td>
</tr>
<tr>
<td>Pagalinor 2</td>
<td>S.G 810</td>
<td>S.G 750</td>
<td>LW N° 6</td>
<td>650–680°C</td>
</tr>
<tr>
<td>Pallorag 33</td>
<td>S.G 810</td>
<td>S.G 750</td>
<td>LW N° 7</td>
<td>700 °C</td>
</tr>
<tr>
<td>Pagalin 2</td>
<td>S.G 880</td>
<td>S.G 750</td>
<td>LW N° 7</td>
<td>630–680°C</td>
</tr>
</tbody>
</table>

1 = Graphite crucible 2 = Universal ceramic crucible 3 = Vitrified carbon crucible

Laser welding wire
- **Preheating**:
 - **°C**:
 - Strator 3: 700
 - Pagalinor 2: 650–680
 - Pallorag 33: 700
 - Pagalin 2: 630–680

- **Crucible**:
 - Strator 3: Graphite crucible
 - Pagalinor 2: Universal ceramic crucible
 - Pallorag 33: Graphite crucible
 - Pagalin 2: Graphite crucible

- **Casting temperature**:
 - Strator 3: 1010–1060
 - Pagalinor 2: 1180
 - Pallorag 33: 1120–1170
 - Pagalin 2: 1270

Alloys Laser welding wire

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Pre-Solder</th>
<th>Post Solder</th>
<th>Laser welding wire</th>
<th>Preheating °C</th>
<th>Crucible</th>
<th>Casting temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strator 3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>700</td>
<td>Graphite crucible</td>
<td>1010–1060</td>
</tr>
<tr>
<td>Pagalinor 2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>650–680</td>
<td>Universal ceramic crucible</td>
<td>1180</td>
</tr>
<tr>
<td>Pallorag 33</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>700</td>
<td>Graphite crucible</td>
<td>1120–1170</td>
</tr>
<tr>
<td>Pagalin 2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>630–680</td>
<td>Graphite crucible</td>
<td>1270</td>
</tr>
</tbody>
</table>

* Annealing before hardening